Microbial copper reduction method to scavenge anthropogenic radioiodine

نویسندگان

  • Seung Yeop Lee
  • Ji Young Lee
  • Je Ho Min
  • Seung Soo Kim
  • Min Hoon Baik
  • Sang Yong Chung
  • Minhee Lee
  • Yongjae Lee
چکیده

Unexpected reactor accidents and radioisotope production and consumption have led to a continuous increase in the global-scale contamination of radionuclides. In particular, anthropogenic radioiodine has become critical due to its highly volatile mobilization and recycling in global environments, resulting in widespread, negative impact on nature. We report a novel biostimulant method to effectively scavenge radioiodine that exhibits remarkable selectivity for the highly difficult-to-capture radioiodine of >500-fold over other anions, even under circumneutral pH. We discovered a useful mechanism by which microbially reducible copper (i.e., Cu(2+) to Cu(+)) acts as a strong binder for iodide-iodide anions to form a crystalline halide salt of CuI that is highly insoluble in wastewater. The biocatalytic crystallization of radioiodine is a promising way to remove radioiodine in a great capacity with robust growth momentum, further ensuring its long-term stability through nuclear I(-) fixation via microcrystal formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Macrocyclic copper(II) complexes: superoxide scavenging activity, structural studies and cytotoxicity evaluation.

Synthetic superoxide dismutase mimetics have emerged as a potential novel class of drugs for the treatment of oxidative stress related diseases. Among these agents, metal complexes with macrocyclic ligands constitute an important group. In this work we synthesized five macrocyclic copper(II) complexes and evaluated their ability to scavenge the superoxide anions generated by the xanthine-xanthi...

متن کامل

Synthesis and Characterization of Monodispersed Copper Colloids in Polar Solvents

A chemical reduction method for preparing monodispersed pure-phase copper colloids in water and ethylene glycol has been reported. Owing to the reduction property of ethylene glycol, the reaction rate in ethylene glycol is higher than that in water. In addition, the amount of reducing agent can be reduced largely. Ascorbic acid plays roles as reducing agent and antioxidant of colloidal copper, ...

متن کامل

Ziziphus mauritiana mediated synthesis of copper and nickel nanoparticles for comparative efficacy in biological water purification

The burden of life on the earth is the source of biological contamination in water. Nanotechnology has promising contributions in control of microbial contaminations and medicinal plants further increase these properties. Presently, copper acetate and nickel oxide nanoparticles were synthesized using 1mM solution of each with Ziziphus mauritiana leaves extract as reducing agent. Nanoparticles w...

متن کامل

The Effect of Polyvinylpyrrolidone on the Formation of Copper Nanoplates in Wet-Chemical Reduction Method

In this work, we report synthesis and characterization of copper nanoparticles in polymer matrix by wet-chemical reduction method using ascorbic acid as reducing agent, copper (II) sulfate as metal precursor and polyvinylpyrrolidone k-30 (PVP K-30) as surfactant agent. The reaction was carried out in a high-speed stirring mixture at room temperature under nitrogen atmosphere. Characterization o...

متن کامل

The Effect of Polyvinylpyrrolidone on the Formation of Copper Nanoplates in Wet-Chemical Reduction Method

In this work, we report synthesis and characterization of copper nanoparticles in polymer matrix by wet-chemical reduction method using ascorbic acid as reducing agent, copper (II) sulfate as metal precursor and polyvinylpyrrolidone k-30 (PVP K-30) as surfactant agent. The reaction was carried out in a high-speed stirring mixture at room temperature under nitrogen atmosphere. Characterization o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016